

 Navigation

 	
 index

 	
 next |

 	stackd.io 0.8.0.dev20160128171505 documentation

Welcome to stackd.io!

stackd.io is a modern cloud deployment and provisioning framework for everyone. Its purpose
is to provide a common platform for deploying and configuring hardware on any cloud platform.
We currently only support AWS EC2, but the driver framework is expandable to support other
cloud providers.

stackd.io is a Django [https://www.djangoproject.com/] project, and uses Salt [http://saltstack.com/] for its back-end configuration management.

Contents

	Quick Start Guide
	Amazon AMI

	MySQL

	Python virtual environments

	stackdio user and sudo access

	OS-specific preparation

	Installation

	Configuration

	stackd.io users

	Web server configuration

	RabbitMQ, celery, and salt

	Try it out!

	Creating additional users

	Using the Amazon AMI
	Building an AMI

	Using the AMI

	Preparing Ubuntu for stackd.io installation
	Prerequisites

	MySQL

	virtualenvwrapper

	Core requirements

	Next Steps

	Preparing CentOS for stackd.io installation
	Prerequisites

	iptables

	SELinux

	EPEL

	MySQL

	virtualenvwrapper

	Core requirements

	Next Steps

	stackd.io webserver guide
	Common Steps

	Apache

	Nginx

	LDAP Guide
	django-auth-ldap

	LDAP and stackd.io

	Contributor Guidelines
	Filing issues and feature requests

	Contributing Code

	Pull request guidelines

	CLA

	Branch naming

	Code style and quality

	PEP8 compatibility

	Tests

	Contact Information
	Filing issues and feature requests

	Feature Requests

	Bug Reports

	Usage Questions

	Long term development comments

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

Quick Start Guide

This guide is intended to quickly march you through the steps of
installing and running stackd.io and its dependencies. We’re not
intending to be complete or provide you with everything needed for a
production-ready install, we may make some assumptions you don’t agree
with, and there may be things we missed. If you feel anything is out of
the ordinary, a bit confusing, or just plain missing, please contact
us.

Amazon AMI

We know that reading through a big, messy guide like this one and
executing each and every command will be time consuming and error prone.
If you would rather just run a script to do a lot of this for you, we
have a script to build an AMI for you. Keep in mind that the script is somewhat
opinionated and won’t let you make many decisions (you’re free to modify
it to suit your needs though!) Here’s a list of things it will do:

	Install all of the necessary stuff (MySQL, python, virtualenv, tons of packages, etc)

	Create a stackdio virtualenv at /usr/share/stackdio

	Install stackdio and its python dependencies

	Install and configure Nginx

	Install and configure supervisord to run gunicorn, celery, and salt-master

	Create an admin user

For more information, check out the AMI guide: Using the Amazon AMI

MySQL

We’re using stackd.io internally with MySQL. Since stackd.io is using
Django, it inherently supports many different database servers, so if
you need something different feel free, but you’re on your own for its
install. Be sure to plug in the correct settings later when configuring
stackd.io with different servers. For more information on Django’s
database support, see:
https://docs.djangoproject.com/en/1.8/ref/databases/

Python virtual environments

It’s highly recommend to install stackd.io into a Python virtualenv, and
we recommend using virtualenv wrapper.

stackdio user and sudo access

Some of the coming steps in the Quick Start Guide require sudo/root
access, but once those are handled, the rest of stackd.io should work
with a non-root user. For ease of use, we’re going to create a
stackdio user, give sudo access, and use this user for the remainder
of this guide.

Create the user
sudo useradd -m -s/bin/bash -U stackdio

Give sudo
sudo echo 'stackdio ALL=(ALL) NOPASSWD:ALL' | sudo tee /etc/sudoers.d/stackdio > /dev/null

Switch to user...and remain as this user for the rest of the guide
sudo su - stackdio

OS-specific preparation

Warning

You must follow the steps in one of the following prep guides for
the OS you’re installing stackd.io in.

Follow one of the individual guides below to prepare your particular
environment for stackd.io. Once you finish, come back here and continue
on.

	Preparing CentOS for stackd.io installation

	Preparing Ubuntu for stackd.io installation

Installation

Below we’re going to create our virtualenv named stackdio and
install it directy from github. You can name your virtualenv whatever
you like, but remember to modify the steps accordingly.

Creating the virtualenv

Let’s create a virtualenv to install stackd.io into:

mkvirtualenv stackdio

The virtualenv should automatically activate when you create it. If you
exit your current shell and come back later to work on stackdio and find
things not working as expected you probably need to activate the
virtualenv again. To do this, virtualenvwrapper gives you the workon
command:

workon stackdio

Install bower

In your terminal, run the following command to install bower:

Note

You must have previously installed npm/node from the OS specific preparation

sudo npm install -g bower

Install the stackd.io project

Note

Double-check that your virtualenv is activated or else this
will probably complain that you don’t have permissions to install
(because it’s trying to install into the global python site-packages
directory which we don’t want!)

There’s two options for installing here. We recommend pulling the latest version from our
releases page [https://github.com/stackdio/stackdio/releases], like this:

workon stackdio # Activate the virtualenv
pip install https://github.com/stackdio/stackdio/releases/download/0.7.0a4/stackdio_server-0.7.0a4-py2-none-any.whl

If you’d rather have the most up to date code, you can install from our repository instead:

workon stackdio # Activate the virtualenv
cd /tmp
git clone https://github.com/stackdio/stackdio.git
cd stackdio
bower install
pip install -e .[production]

For mysql only
pip install -e .[mysql]

Configuration

After the install, you’ll have a stackdio command available to
interact with much of the platform. First off, we need to configure
stackd.io a bit. The stackdio init command will prompt you for
several pieces of information. If you followed all steps above verbatim,
then all defaults may be accepted, but if you deviated from the path you
will need to provide the following information:

	an existing user on the system that will run everything (it will
default to the stackdio user)

	an existing location where stackd.io can store its data (the default
is $HOME/.stackdio/storage and will be created for you if
permissions allow)

	a database DSN that points to a running database you have access to
(if you’re using the MySQL install from above, the default
mysql://stackdio:password@localhost:3306/stackdio is appropriate)

stackdio init

Now, let’s populate are database with a schema:

stackdio manage.py migrate

IF you installed from our github repository, you’ll need to build the minified javascript files:

ONLY DO THIS IF YOU INSTALLED FROM THE GITHUB REPOSITORY.
stackdio manage.py build_ui

stackd.io users

LDAP

stackd.io can easily integrate with an LDAP server. See our LDAP Guide
for more information on configuring stackd.io to work with LDAP.
If you choose to go the LDAP route, you can skip this
entire section because users who successfully authenticate and are
members of the right groups via LDAP will automatically be created in
stackd.io.

Non-LDAP admin user

Admin users in stackd.io have less restriction to various pieces of the
platform. For example, only admin users are allowed to create and modify
cloud providers and profiles that other users can use to spin up their
stacks.

Note

You will need at least one admin user to configure some key areas of the system.

stackdio manage.py createsuperuser

and follow prompts...

Non-LDAP regular users

When not using LDAP, the easiest way to create new non-admin users is to
use the built-in Django admin interface. First we need the server to be
up and running so keep following the steps below and we’ll come back to
adding users later.

Web server configuration

For the quickstart, we’ll use the stackdio command to generate the
necessary configuration for Nginx to serve our static content as well as
proxying the Python app through gunicorn.

To configure Nginx for CentOS:

CENTOS

add execute permissions to the user's home directory for static content to serve correctly
chmod +x ~/

stackdio config nginx | sudo tee /etc/nginx/conf.d/stackdio.conf > /dev/null

rename the default server configuration
sudo mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.conf.bak

To configure Nginx for Ubuntu:

UBUNTU ONLY
stackdio config nginx | sudo tee /etc/nginx/sites-available/stackdio > /dev/null
sudo ln -s /etc/nginx/sites-available/stackdio /etc/nginx/sites-enabled

remove the default configuration symlink
sudo rm /etc/nginx/sites-enabled/default

After this, generate the static content we’ll need to serve:

stackdio manage.py collectstatic --noinput

and finally, start Nginx:

sudo service nginx restart

RabbitMQ, celery, and salt

Start the rabbitmq server:

sudo service rabbitmq-server start

For celery and salt-master, we’ll be using supervisord. The required
packages should already be installed, so we’ll just need to configure
supervisor and start the services.

generate supervisord configuration that controls gunicorn, celery, and salt-master and store it in the .stackdio directory.
stackdio config supervisord > ~/.stackdio/supervisord.conf

launch supervisord and start the services
supervisord -c ~/.stackdio/supervisord.conf
supervisorctl -c ~/.stackdio/supervisord.conf start all

Try it out!

At this point, you should have everything configured and running, so
fire up a web browser and point it to your hostname and you should see
the stackd.io login page. If you’re using LDAP, try logging in with a
user that is a member of the stackdio-admin and stackdio-user
groups, or login with the admin user you created earlier.

Creating additional users

Note

If you’re using LDAP, you can skip this step.

The superuser we created earlier will give us admin access to stackd.io,
however, you probably want at least one non-superuser. Point your
browser to http://hostname:8000/__private/admin and use the username and
password for the super user you created earlier. You should be presented
with the Django admin interface. To create additional users, follow the
steps below.

	click Users

	click Add user in the top right of the page

	set the username and password of the user and click save

	optionally provide first name, last name, and email address of the
user and click save

The newly created users will now have access to stackd.io. Test this by
logging out and signing in with one of the non-admin users.

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

Using the Amazon AMI

To make installation easier, we provide an packer [https://packer.io] build that creates an Amazon Machine Image (AMI).
This AMI is built from an Ubuntu 14.04 LTS image, and is HVM based. While our ultimate plan is to
provide this AMI on the AWS Marketplace [https://aws.amazon.com/marketplace], we don’t have this set up yet.

Building an AMI

Note

The build script that runs packer requires you to have python installed locally.

1. Install Packer

If you haven’t already, install packer using their documentation here [https://packer.io/docs/installation.html].
We recommend using homebrew for the installation if you’re using OSX.

2. Accept License

Before building with packer, you must accept the license agreement for the base Ubuntu AMI:
http://aws.amazon.com/marketplace/pp?sku=b3dl4415quatdndl4qa6kcu45

3. Clone Repository

git clone https://github.com/stackdio/stackdio.git
cd stackdio

4. Export AWS Credentials

Ensure packer knows about your aws credentials:

export AWS_ACCESS_KEY='<YOUR_ACCESS_KEY>'
export AWS_SECRET_KEY='<YOUR_SECRET_KEY>'

5. Run the packer build

Finally, run the packer build, where <version> is the version you want to build:

./packer/build.py <version>

After a few minutes, you should have a usable AMI.

Using the AMI

After you’ve built the AMI, you can launch an instance from it. Once the instance is running,
you can navigate to http://<instance-ip>/ and login using the following credentials:

username: admin
password: stackdio

We recommend changing this password immediately after logging in the first time.

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

Preparing Ubuntu for stackd.io installation

The steps below were written using Ubuntu 13.10 from a Ubuntu-provided
AMI on Amazon Web Services (AWS). The exact AMI we used is
ami-2f252646, and you should be able to easily launch an EC2
instance using this AMI from the
AWS EC2 Console [https://console.aws.amazon.com/ec2/home?region=us-east-1#launchAmi=ami-2f252646].

Prerequisites

All of these steps require root or sudo access. Before installing anything

with apt-get you should run apt-get update first.

MySQL

Note

Please skip this section if you are using a different
database or already have a supported database server running
elsewhere.

Install MySQL server:

sudo apt-get install mysql-server mysql-client

When prompted, provide a password for the root user to access the MySQL server.

Below we’ll create a stackdio database and grant permissions to the
stackdio user for that database.

WARNING: we’re not focusing on security here, so the default
MySQL setup definitely needs to be tweaked, passwords changed, etc.,
but for a quick-start guide this is out of scope. Please, don’t run
this as-is in production :)

echo "create database stackdio; \
grant all on stackdio.* to stackdio@'localhost' identified by 'password';" | \
mysql -hlocalhost -uroot -ppassword

virtualenvwrapper

install the package
sudo apt-get install virtualenvwrapper

post-install step for virtualenvwrapper shortcuts
source /etc/bash_completion.d/virtualenvwrapper

Core requirements

	gcc and other development tools

	git

	mysql-devel

	swig

	python-devel

	rabbitmq-server

To quickly get up and running, you can run the following to install the
required packages.

Install requirements needed to install stackd.io
sudo apt-get install python-dev libssl-dev libncurses5-dev libyaml-dev swig nodejs npm \
 libmysqlclient-dev rabbitmq-server git nginx libldap2-dev libsasl2-dev

Link nodejs over to node - bower will complain otherwise
sudo ln -s /usr/bin/nodejs /usr/bin/node

Next Steps

You’re now finished with the Ubuntu-specific requirements for stackd.io.
You can head back over to the Quickstart Guide and
continue the installation of stackd.io.

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

Preparing CentOS for stackd.io installation

The steps below were written using CentOS 6.4 from a CentOS-provided AMI
on Amazon Web Services (AWS). The exact AMI we used is ami-bf5021d6,
and you should be able to easily launch an EC2 instance using this AMI from the
AWS Marketplace [https://aws.amazon.com/marketplace/pp/B00DGYP804/ref=sp_mpg_product_title?ie=UTF8&sr=0-4].

Prerequisites

All of the CentOS-provided AMIs have SELinux and iptables enabled. We
disabled both of these to be as straight forward as possible during this
guide. SELinux causes issues that are beyond the scope of the guide, and
we disabled iptables because we leverage EC2’s security groups for
firewall access.

iptables

Let’s just turn it off for now. Please note, if you’re using EC2 or some
other cloud provider that has firewall rules enabled by default, you
will need to configure the particular firewall rules to gain access to
the web server we’ll start in the guide. The default port for the
webserver is 8000, so open this port up at a minimum. (Port 22 for SSH
will obviously be needed as well.)

sudo service iptables stop

SELinux

Getting things working using SELinux could be an entirely separate
guide. For our purposes, it’s completely out of scope, so we’re going to
disable it.

Note

You will be required to restart the machine during this step.

Edit /etc/sysconfig/selinux and make sure the line beginning
with SELINUX looks like:
SELINUX=disabled

If it was already disabled you can skip the following, however
if you switched the policy from anything other than 'disabled'
you need to relabel the filesystem to remove the garbage that
SELinux has added. This *requires* a restart to take effect.
touch /.autorelabel
reboot

When the machine is back up, you can confirm SELinux is not
running
>>> selinuxenabled
>>> echo $?
>>> 1

If the output is 1 you're good to go.

EPEL

sudo rpm -Uvh http://mirror.steadfast.net/epel/6/i386/epel-release-6-8.noarch.rpm

MySQL

Note

Please skip this section if you are using a different database or
already have a supported database server running elsewhere.

Install MySQL server:

sudo yum install mysql-server

Start MySQL server:

sudo service mysqld start

Below we’ll create a stackdio database and grant permissions to the
stackdio user for that database.

Warning

We’re not focusing on security here, so the default
MySQL setup definitely needs to be tweaked, passwords changed, etc.,
but for a quick-start guide this is out of scope. Please, don’t run
this as-is in production :)

echo "create database stackdio; \
grant all on stackdio.* to stackdio@'localhost' identified by 'password';" | \
mysql -h localhost -u root

virtualenvwrapper

install the package
sudo yum install python-virtualenvwrapper

Update the user's ~/.bash_profile to enable virtualenvwrapper
You're using the stackdio user, right? :)
echo "source /usr/bin/virtualenvwrapper.sh" >> ~/.bash_profile

re-source the .bash_profile
. ~/.bash_profile

Core requirements

	gcc and other development tools

	git

	mysql-devel

	swig

	python-devel

	rabbitmq-server

	nginx

To quickly get up and running, you can run the following to install the
required packages.

Install the development tools group
sudo yum groupinstall "Development Tools"

Install the other requirements needed to install stackd.io
sudo yum install git mysql-devel swig python-devel rabbitmq-server nginx nodejs npm

Next Steps

You’re now finished with the CentOS-specific requirements for stackd.io.
You can head back over to the Quickstart Guide and
continue the installation of stackd.io.

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

stackd.io webserver guide

This guide will help you quickly get the web portion of stackd.io
running behind either Apache or Nginx. You should’ve already worked
through the Quick Start Guide before running through
the steps below. As with the quickstart, our focus is not entirely on
building out a production-ready system, but merely helping you quickly
get a system stood up to become familiar with stackd.io. Once you
understand how it works, then we can start hardening the system for
production use.

So, with that said, there are two paths to take: Apache or Nginx. We
recommend using whichever you feel more comfortable with. Some of us
here like Apache, while others like Nginx. Your mileage may vary :)

Common Steps

To do some of the steps below you will need to have already installed
stackdio and be in the virtual environment. To make sure you’re in the
virtualenv:

workon stackdio

Both Apache and Nginx installs need a place to store logs and some
static files to serve up. These two steps are common to both and should
be run before proceeding with configuring the web server.

Create the log directory that we'll have Apache or Nginx log to

mkdir -p ~/.stackdio/var/log/web

And tell Django to collect its static files into a common directory for the webserver to serve up
stackdio manage.py collectstatic --noinput

Apache

CentOS Installation

Install required packages:

sudo yum install httpd mod_wsgi mod_ssl

Followed by having stackd.io generate a simple Apache configuration file
for serving up the Django-based API and static assets and store the
output into the appropriate location.

stackdio config apache | sudo tee /etc/httpd/conf.d/stackdio.conf > /dev/null

Fix a permissions problem with the user’s home directory not having
execute permissions. This is needed because of httpd v2.2 needing
directory execute permissions from the web directory up to the root
directory.

chmod +x ~/

Note

You may pass –with-ssl to generate boilerplate for serving
over SSL, but you will need to add your certs and point to them in
the configuration file. You may also need to remove the existing
ssl.conf from within conf.d.

And that’s it...let’s start the server and then point your browser to
the hostname on port 80 (use https if you decided to serve over SSL.)

sudo service httpd restart

Ubuntu Installation

Install required packages:

sudo apt-get install apache2 libapache2-mod-wsgi

and just like the CentOS instructions, generate and store the Apache
configuration file into the correct location:

stackdio config apache | sudo tee /etc/apache2/sites-enabled/stackdio.conf > /dev/null

Note

You may pass –with-ssl to generate boilerplate for serving
over SSL, but you will need to add your certs and point to them in
the configuration file.

and finally, start the server:

sudo service apache2 restart

Nginx

In our configuration, Nginx will be used to serve static files and as a
proxy to send requests down to the Django application running via
gunicorn on port 8000. The configuration we’ll generate is useful to use
a quick start mechanism to get you up and running behind Nginx/gunicorn
very quickly.

CentOS Installation

Install required packaged, generate and write configuration file, and
restart server:

sudo yum install nginx

stackdio config nginx | sudo tee /etc/nginx/conf.d/stackdio.conf > /dev/null

rename the default server configuration
sudo mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.conf.bak

sudo service nginx restart

Ubuntu Installation

sudo apt-get install nginx

stackdio config nginx | sudo tee /etc/nginx/sites-enabled/stackdio.conf > /dev/null

remove the default configuration symlink
sudo rm /etc/nginx/sites-enabled/default

sudo service nginx restart

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

LDAP Guide

django-auth-ldap

Under the hood, we use django-auth-ldap [https://pythonhosted.org/django-auth-ldap/] for all our interaction with an LDAP server.
It’s a very useful library that allows us to integrate with LDAP in just a few lines of
python configuration.

LDAP and stackd.io

If you’d like to integrate with LDAP, all you need to do is create an ldap_settings.py file
in the stackdio.server.settings package. If this file exists, stackd.io will automatically
pick it up and begin authenticating users to your ldap server. Inside that settings package,
there is an ldap_settings.py.template file that you may rename to ldap_settings.py
and update to match your needs. It’s contents are displayed below.

The template contains most of the relevant bits you may want to use, but we defer anything
deeper to the django-auth-ldap [https://pythonhosted.org/django-auth-ldap/] documentation.

Note

If you’re using the packer-built AMI described in Using the Amazon AMI, your ldap settings should be placed here:
/usr/share/stackdio/lib/python2.7/site-packages/stackdio/server/settings/ldap_settings.py

##
LDAP configuration
We are using django-auth-ldap to enable stackd.io to use LDAP for
authentication. The settings below correspond to our internal
LDAP and we don't guarantee this to work for all. Please see
the docs at http://pythonhosted.org/django-auth-ldap/ for more
information.
##

import ldap
from django_auth_ldap.config import LDAPSearch, GroupOfNamesType

We use direct binding with a dedicated user. If you have anonymous
access available or can bind with any user, you'll want to change
this.
AUTH_LDAP_BIND_AS_AUTHENTICATING_USER = False
AUTH_LDAP_SERVER_URI = 'YOUR_LDAP_SERVER_URI'
AUTH_LDAP_BIND_DN = 'uid=YOUR_BIND_USER,ou=People,dc=yourcompany,dc=com'
AUTH_LDAP_BIND_PASSWORD = 'YOUR_BIND_USER_PASSWORD'

AUTH_LDAP_REQUIRE_GROUP = ('cn=stackdio-user,ou=Group,dc=yourcompany,dc=com')
AUTH_LDAP_USER_SEARCH = LDAPSearch('ou=People,dc=yourcompany,dc=com',
 ldap.SCOPE_SUBTREE,
 '(&(objectClass=Person)(uid=%(user)s))')

Group handling. Read the django_auth_ldap documentation for more info.
AUTH_LDAP_FIND_GROUP_PERMS = False
AUTH_LDAP_MIRROR_GROUPS = False

AUTH_LDAP_GROUP_TYPE = GroupOfNamesType()
AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
 'ou=Group,dc=yourcompany,dc=com',
 ldap.SCOPE_SUBTREE,
 '(objectClass=groupOfNames)'
)

AUTH_LDAP_USER_ATTR_MAP = {
 'first_name': 'givenName',
 'last_name': 'sn',
 'email': 'mail',
}

AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 'is_superuser': 'cn=stackdio-admin,ou=Group,dc=yourcompany,dc=com',
 'is_staff': 'cn=stackdio-admin,ou=Group,dc=yourcompany,dc=com',
}

AUTH_LDAP_CONNECTION_OPTIONS = {
 ldap.OPT_X_TLS_REQUIRE_CERT: ldap.OPT_X_TLS_NEVER,
 ldap.OPT_X_TLS_NEWCTX: 0,
}

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

Contributor Guidelines

We’re hopeful that you’ll find value in using stackd.io along with your
existing tools to manage your infrastructure. We’re also hopeful that
you’ll find ways to help contribute. Either through finding and
reporting bugs, providing new features, or even getting your hands dirty
and contributing some code or docs. However you feel comfortable
contributing, we offer a few helpful guidelines to make it that much
easier.

Note that stackd.io is built on SaltStack, and we believe that its
community will find stackd.io useful. As such, we’re trying to stay
close to the conventions and guidelines they’ve adopted to make it
easier for folks in that community to help out – and we’ve borrowed
from the SaltStack Development
guide [http://docs.saltstack.com/topics/development/hacking.html]
:)

Filing issues and feature requests

The process for filing issues and feature requests is described in the
Contact Information page.

Contributing Code

Since we’re using Github, the recommended workflow for fixing bugs,
adding features, or modifying documentation is to fork and submit pull
requests. The process is pretty straightforward, but if you’re
unfamiliar with Github, take some time to browse through Github’s
Help [https://help.github.com/].

In a nutshell, we’ll need you to:

	fork the stackd.io project into your personal account
[Tutorial [https://help.github.com/articles/fork-a-repo]]

	make the necessary changes to the code/docs and issue a pull request.
[Tutorial [https://help.github.com/articles/using-pull-requests/]]

	keep your local fork in sync with the parent stackd.io repository to
minimize the chance of merge conflicts.
[Tutorial [https://help.github.com/articles/syncing-a-fork]]

	and, if you’re working on multiple things or your changes are going
to be somewhat large, it’s generally recommended to create a branch
for each piece of work you’re doing.
[Tutorial [https://help.github.com/articles/creating-and-deleting-branches-within-your-repository]]

NOTE: SaltStack has a great
guide [http://docs.saltstack.com/topics/development/hacking.html]
on how to work within their project and it mostly applies to
stackd.io as well

Pull request guidelines

CLA

Contribution to stackd.io requires a CLA before pull requests will be
merged. This is currently handled manually by the repo admins, but may
be handled by a bot in the future.

Branch naming

The branch name that the pull request originates from should start with
either feature/ or bugfix/, depending on its contents. The rest
of the branch name should describe the contents of the patch, preferably
by being an Issue#. Issue#’s are required for bugfix/ branches.

Code style and quality

PEP8 compatibility

All pull requests must meet PEP8 compatibility

Tests

Pull requests will be easier to review and understand if they contain
automated tests for the functionality changed. As such, pull requests
with tests are more likely to be accepted more quickly.

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	stackd.io 0.8.0.dev20160128171505 documentation

Contact Information

	Static site - http://stackd.io

	IRC - #stackdio [http://webchat.freenode.net/?channels=stackdio]
on Freenode

	Twitter - @stackdio [https://twitter.com/stackdio] or #stackdio

	Github - https://github.com/stackdio/stackdio

Filing issues and feature requests

We want stackd.io to be solid, but there’s always going to be issues to
fix and new features to enhance the product. If you find any problems or
would like to request a particular feature, feel free to head over to
stackd.io’s issue
tracker [https://github.com/stackdio/stackdio/issues]. Below are some
general guidelines.

Feature Requests

We definitely want this project to be better in every way, but sometimes
we just can’t see the forest because of those trees. If you think of
something that would make stackd.io be more intuitive, easier, faster,
or efficient, we encourage you to file a feature
request [https://github.com/stackdio/stackdio/issues], but please
keep the following in mind:

	Double-check that the feature hasn’t already made its way into the
tracker and/or been completed

	After filing it, please be patient – sometimes it might take a while
for things to get prioritized, so don’t be bummed that it’s not
available tomorrow ;)

	As always, the quickest way to get your shiny new feature is to get
your hands dirty and implement it yourself!

Bug Reports

If you think you’ve found a bug, here’s what we ask of you:

	Check the issue
tracker [https://github.com/stackdio/stackdio/issues] and/or
search for your
issue [https://github.com/stackdio/stackdio/search?type=Issues] to
make sure we aren’t already tracking the problem

	See if you can reproduce the issue on the develop branch of the
project to confirm we haven’t already fixed the problem

	Try to be as descriptive as possible when filing your issues. We’d
like to know the operating system you’re on, any stack traces you’ve
seen in the logs, a good account of the steps required to reproduce
the problem along with what you feel is the expected outcome.
Providing more information is almost always better so we can quickly
identify and fix the issue.

	Be patient :)

	Optionally, it would be fantastic if you could help us out and fix
the problem yourself...if you’re brave enough, see the Contributor Guidelines
on contributing to the project.

Usage Questions

Usage questions are best handled in one of the following ways:

	Asking a question on the IRC channel

	Emailing the contributors, especially those who have been recently
active on the project.

Long term development comments

Long term development tasks will usually have a branch opened on the
main repository, along with a pull request back into develop. This is
the place to make comments on the development cycle for that feature.

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	stackd.io 0.8.0.dev20160128171505 documentation

Index

 Copyright 2015, Digital Reasoning.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment-bright.png

_static/logo.png
B stackd.io

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

